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STABILITY OF POISEUILLE FLOW

IN THE PRESENCE OF A LONGITUDINAL MAGNETIC FIELD

UDC 537.84A. V. Proskurin and A. M. Sagalakov

The stability of the plane flow of an electrically conducting fluid with respect to small perturbations
was studied at large Reynolds numbers in the presence of a longitudinal magnetic field. The depen-
dence of the critical Reynolds number on the electrical conductivity is investigated. At large Reynolds
numbers, a new branch of instability and a sudden change in the critical Reynolds numbers is found.
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Introduction. The stability of a plane magnetohydrodynamic Poiseuille flows of an electrically conducting
fluid with respect to small perturbations in a longitudinal magnetic field has been studied for a long time [1–7]
and is of interest for the development of general theory for laminar–turbulent transition of viscous fluid flows in
channels and for investigation of the bifurcation of solutions of the Navier–Stokes equations. This problem is a
classical one but there are still no simple and effective methods to study Tollmien–Schlichting instability in a linear
approximation at large Reynolds numbers and considerable magnetic Prandtl numbers. Experimental verification
of the results and propositions of the linear theory of hydrodynamic stability is also complicated, especially at large
magnetic Prandtl number.

Direct numerical simulations of instability development yield results close to experimental data [8–10]. Such
calculations, however, are very complex and expensive because of the necessity of using supercomputers. In addition,
it is difficult to establish the basic laws of development and stabilization of perturbations versus the parameters
included in the equations, because, for each set of parameters, one has to investigate a set of perturbations of
different form and amplitude. Furthermore, direct numerical simulation techniques have substantial limitations on
the Reynolds number and the order of the system of equations to be solved. At the same time, the capabilities of
modern computational facilities allow small perturbations of magnetohydrodynamic flows to be studied using the
full linearized equations of magnetic hydrodynamics over a wide range of parameters of the equations and at large
Reynolds numbers.

1. Formulation of the Problem. We write the equations of magnetic hydrodynamics in dimensionless
form

∂H

∂t
+ (V ∇)H = (H∇)V +

1
Rem

ΔH ,

∂V

∂t
+ (V ∇)V = −∇

(
p + Al

H2

2

)
+ Al (H∇)H +

1
Re

ΔV , (1)

div H = 0, div V = 0.

Here Al = H2
0/(4πρV 2

0 ) is the Alfvén number, Re = V0d/ν is the Reynolds number, and Rem = 4πV0dσ/c2 is the
magnetic Reynolds number. As the characteristic parameters we use the channel width, the flow-averaged velocity,
and the intensity of the external magnetic field. We introduce Cartesian coordinates with the x axis directed
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along the flow direction and the y axis perpendicular to the parallel planes bounding the fluid. The z axis is
perpendicular to the x and y axes. The boundary of the channel corresponds to the coordinates y = ±1/2. It is
reasonable to introduce the generalized pressure Pg = p+Al H2/2. Thus, the structure of the equations of magnetic
hydrodynamics is such that three parameters (for example, Al, Re, and Rem) completely determine the behavior
of the system for the specified channel geometry and external magnetic field. In the calculations, instead of the
magnetic Reynolds number we used the magnetic Prandtl number Prm = Rem / Re = 4πσν/c2, which is directly
proportional to the electric conductivity.

The solution of system (1) can be represented as

V = U + v, H = H0 + h, Pg = P0 + P, (2)

where U = {U, 0, 0}, H0 = {1, 0, 0}, P0 is the steady-state solution of system (1); U = (3/2)(1 − 4y2) and v, h,
and P are perturbations of the velocity, magnetic field, and generalized pressure. Substitute (2) into Eqs. (1) and
assuming the perturbations to be small, we obtain the linearized system of equations

∂h

∂t
+ (U∇)h + (v∇)H0 = (H0∇)v + (h∇)U +

1
Rem

Δh,

∂v

∂t
+ (U∇)v + (v∇)U = −∇P + Al (H0∇)h + Al (h∇)H0 +

1
Re

Δv, (3)

div h = 0, div v = 0.

The channel walls are considered impermeable and perfectly electrically conducting. The boundary condi-
tions for the perturbations are given by

y = ±1/2: v = 0, h = 0.

We seek solutions of the linearized system of equations of magnetic hydrodynamics (3) in the form

{vx(y), vy(y), vz(y), hx(y), hy(y), hz(y), q(y)} eiα(x−Ct)+iβz, (4)

where vx, vy, vz , hx, hy, and hz are projections of the perturbation amplitudes of the velocity and magnetic field
intensity onto the corresponding Cartesian axes, q is the pressure perturbation amplitude, α is the longitudinal
wavenumber, β is the cross-sectional wavenumber, C = X + iY is the complex phase velocity, X is the proper phase
velocity, and αY is the perturbation attenuation decrement (at Y < 0) or the perturbation growth increment (at
Y > 0). Substitution of (4) into (3) yields the system of differential equations

iα(U − C)hx = iαvx + hyU ′ + (h′′
x − hx(α2 + β2))/(Prm Re); (5)

iα(U − C)hy = iαvy + (h′′
y − hy(α2 + β2))/(Prm Re); (6)

iα(U − C)hz = iαvz + (h′′
z − hz(α2 + β2))/(Prm Re); (7)

iα(U − C)vx + vyU ′ = −iαq + iα Al hx + (v′′x − vx(α2 + β2))/ Re; (8)

iα(U − C)vy = −q′ + iα Al hy + (v′′y − vy(α2 + β2))/ Re; (9)

iα(U − C)vz = −iβq + iα Al hz + (v′′z − vz(α2 + β2))/ Re; (10)

h′
y + iαhx + iβhz = 0, v′y + iαvx + iβvz = 0. (11)

We introduce the new functions: v = αvx + βvz and h = αhx + βhz . Multiplying Eq. (5) by α and Eq. (7)
by β, combining the results, and performing similar operations with Eqs. (8) and (10), we obtain

iα(U − C)h = iαv + αhyU ′ + (h′′ − k2h)/(Prm Re),

iα(U − C)hy = iαvy + (h′′
y − k2hy)/(Prm Re);

(12)

iα(U − C)v + αvyU ′ = −ik2q + iα Al h + (v′′ − k2v)/ Re; (13)
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iα(U − C)vy = −q′ + iα Al hy + (v′′y − k2vy)/ Re,

v′y + iv = 0.
(14)

Here k2 = α2 + β2 is the square of the wave vector. In this case, the equation div h = 0 is written as h′
y + ih = 0.

Using this relation in Eq. (13), the quantity h can be expressed in terms of hy. As a result, the system of differential
equations (12)–(14) becomes

iα(U − C)h = iαv + αhyU ′ + (h′′ − k2h)/(Prm Re); (15)

iα(U − C)hy = iαvy + (h′′
y − k2hy)/(Prm Re),

iα(U − C)v + αvyU ′ = −ik2q − α Al h′
y + (v′′ − k2v)/ Re,

iα(U − C)vy = −q′ + iα Al hy + (v′′y − k2vy)/ Re,
(16)

v′y + iv = 0.

It is easy to see that the quantity h is now included only in Eq. (15), which is separated from system (15), (16).
We denote

D = iα Re (U − C), Ω = iαPrm Re (U − C). (17)

Using formulas (17), we write the system of differential equations (16) in the form

v′y = −iv, h′
y = Φ, v′ = Z,

Φ′ = k2hy − iα Re Prmvy + Ωhy,

Z ′ = k2v + α Re Al Φ + ik2 Re q + αU ′ Re vy + Dv,

q′ = − D

Re
vy + iα Al hy − i

Re
Z − k2

Re
vy.

This system is conveniently represented in matrix form

W ′ = M1W + M2V , V ′ = M3W + M4V , (18)

where

W = {v, vy, hy}, V = {Φ, Z, q},

M1 =

⎛
⎝

0 0 0
−i 0 0
0 0 0

⎞
⎠ , M2 =

⎛
⎝

0 1 0
0 0 0
1 0 0

⎞
⎠ ,

M3 =

⎛
⎝

0 −iα Re Prm k2 + Ω
k2 + D αU ′ Re 0

0 −(k2 + D)/ Re iα Al

⎞
⎠ , M4 =

⎛
⎝

0 0 0
α Re Al 0 ik2 Re

0 −i/ Re 0

⎞
⎠ .

System (15), (16) admits the Squire transformations [11]

k Reeff = α Re, αqeff = kq, (19)

where Reeff is the effective Reynolds number that corresponds to the solution of the two-dimensional problem.
Equation (19) leads to the relation

Re∗ = (Reeff)∗/ cos θ, (20)

where cos θ = α/k; the quantities denoted by an asterisk are the critical values of the parameters. Consequently,
two-dimensional perturbations are the most dangerous in the sense that the critical Reynolds numbers for them
are smaller than the critical Reynolds numbers for three-dimensional perturbations. Nevertheless, in this case, the
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Squire theorem is generally speaking inappropriate. Below, we shown how the instability regions of three-dimensional
perturbations “cover” the stability regions formed by two-dimensional perturbations.

2. Numerical Method. As is known, hydrodynamic stability problems, as well as, generally, eigenvalue
problems for non-self-adjoint operators can effectively be solved only numerically. In this case, standard numerical
methods are usually unsuitable: the eigenfunctions of linear stability problems for viscous electrically conducting
fluid flows possess “bad” properties due to the presence of small parameters 1/ Re and 1/ Rem at the higher-order
derivative in the equations. The fundamental system of solutions of such equations contains rapidly growing oscil-

lating solutions of the form exp
( ∫ √

iα Re (U − C) dy
)
, which, due to rounding errors, considerably complicates

the direct numerical finding of the remaining linearly independent eigenfunctions and the solution of the eigenvalue
problem.

In the numerical solution of the Orr–Sommerfield problem using the collocation method [12], the above-
mentioned difficulties are eliminated due to a high quality of the approximate representation of the solution. How-
ever, as the parameter α Re is increased, it is necessary to use an increasing number of expansion terms, which
leads to an increase in the size of the matrix used in the collocation method and deterioration of its conditionality.
At present, the collocation method is used to study the stability of simple plane flows (see, for example, [13]) at
relatively small Reynolds numbers.

Effective solution of hydrodynamic stability problems is provided by step-by-step integration methods, such
as the Godunov orthogonalization method, the elimination method, the differential sweep method [11, 14–16].
However, the orthogonalization and elimination procedures require a large volume of calculations, which increases
rapidly with increasing order of the system solved. The differential sweep method was developed to solve hydrody-
namic stability problems [11, 14]. Advantages of this method are relative simplicity, universality, and high efficiency.
In addition, this method gives results of high reliability, which is confirmed, in particular, by a comparison with
data obtained by other methods, including the collocation method.

The differential sweep method reduces the eigenvalue problem to a sequence of Cauchy problems for a non-
linear system of ordinary differential equations, which is easily integrated numerically. Eigenvalues are determined
by direct sweep. Once an eigenvalue is determined, the corresponding eigenfunction can be found by return sweep.

In the differential sweep method, the subsurface of solutions is described by the equations

W = A(y)V , (21)

where A is a 3 × 3 matrix.
Expression (21) is usually called the sweep scheme. During calculations, the sweep scheme can be changed

to achieve the most favorable behavior of the coefficients of the matrix A for optimization of calculations [11].
The boundary of the channel are subjected to the conditions W = 0, which lead to the boundary condition

A = 0. In the calculations, system (18) is integrated directly at small distances from the channel boundaries with
subsequent use of a particular sweep scheme.

Numerical experiments have shown that the scheme (21) defined by the boundary conditions W = 0 and
A = 0 is not optimal for integration in the middle part of the channel. From the viewpoint of computation time
and simplicity of the algorithm, the most economical sweep version was the following: at small distances from the
channel boundaries, sweep was conducted under the scheme (21) defined by the boundary conditions, and in the
middle part of the channel, we used the reversed sweep scheme

V = GW ; (22)

in the joining of the solutions, the condition G = A−1 is satisfied by virtue of the continuity of the eigenfunctions
and their derivatives. Systems of differential equations for the matrices A and G can be obtained by differentiating
Eqs. (21) and (22) and substituting expressions (18) into them. As a result, we have

A′ = M1A + M2 − A(M3A + M4), G′ = M4G + M3 − G(M2G + M1). (23)

Equation (23) was integrated numerically from the channel boundaries to a certain middle point at which, as well
as at the points of inversion of the sweep scheme, the vectors V and W should be continuous, which allows us to
write the following system of algebraic equations for W :

(G+ − G−)W = 0
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Fig. 1. Curve of Re∗(Al) for Prm = 0.01: the dashed region is the instability region.

Fig. 2. Curves of Re∗(Al) for Prm = 0.01: the solid curve refers to k = α; dashed curve refers
to k = 2α [Re∗ = 2(Reeff)∗], and the dot-and-dashed curve refers to k = 4α [Re∗ = 4(Reeff)∗].

(the plus and minus signs correspond to the sweep coefficients G obtained by integration from the different bound-
aries of the channel). Because W �= 0, we can write the dispersion equation

det (G+ − G−) = 0. (24)

Numerical experiments have shown that, in this sweep scheme, the dispersion relation (24) has “good” properties.
This relation was solved using iterative methods.

Once the eigenvalues are determined, W and V can be found over the entire integration interval using the
return sweep.

3. Calculation Results. we consider perturbations with k = α (two-dimensional perturbations). Figure 1
shows a curve of the critical Reynolds number Re∗ versus Alfvén number at Prm = 0.01. As Al → 0, the critical
Reynolds numbers tend to the values corresponding to the case of plane Poiseuille flow of a dielectric fluid. As the
Alfvén number increases, the critical Reynolds number increases monotonically to Al ≈ 0.01, after which the curve
of Re∗(Al) rotates toward decreasing Alfvén number, limiting the instability region from above. Above this region
at Reynolds numbers of order 107, a new branch of instability is found, whose critical dependences are a downward
convex curve.

To determine the role of two-dimensional perturbations using relation (20), we performed an analysis of
three-dimensional perturbations aimed at elucidating their influence on the stability pattern. The analysis revealed
regions in which three-dimensional perturbations are more dangerous than two-dimensional perturbations. Figure 2
gives a curve of the critical Reynolds number Re∗ versus Alfvén number for Prm = 0.01 and k = α, 2α, and 4α.
Similar curves for other values cos θ can be constructed using relation (20). To the lower branch of the critical
dependences k = α, we draw a vertical tangent at the point A (the corresponding Alfvén number is denoted by
Al∗); at k = α, the tangent intersects the upper branch of the critical dependences at the point B. The instability
region of three-dimensional perturbations (k > α) is on the left of the segment AB.

Thus, accounting for three-dimensional perturbations extends the instability region. At the same time, two-
dimensional perturbations are the most dangerous because the critical Reynolds numbers for them are smaller than
the critical Reynolds numbers for three-dimensional perturbations. The instability regions for three-dimensional
perturbations can be obtained by a simple shift of the curves of Re∗(Al) for two-dimensional perturbations. Next,
we consider only two-dimensional perturbations, which considerably simplifies the stability analysis. To analyze the
flow stability for Al < Al∗, it is sufficient to consider only two-dimensional perturbations.
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Fig. 3. Neutral curves for Prm = 0.01 and Al = 0.005: curves 1 and 2 refer to the lower and upper
instability regions in Fig. 1, respectively.

Fig. 4. Neutral curves for Prm = 1.5 and Al = 0.005 (1), 0.010 (2), and 0.015 (3).

Figure 3 gives neutral curves for Prm = 0.01 and Al = 0.005. The closed neutral curve corresponds to the
lower instability region in Fig. 1, and the unclosed curve to the upper instability region. The “tips” of the neutral
dependences considered are on the curve of Re∗(Al) in Fig. 1. As the Alfvén number increases, the closed region of
instability decreases, ultimately becoming a point. A new finding in this work is the detection of the second branch
of instability at large Reynolds numbers.

Figure 4 gives neutral curves for Prm = 1.5 and Al = 0.005, 0.010, and 0.015. These curves are not closed,
in contrast to the curves considered above. With increasing Alfvén number, the critical Reynolds numbers increase
and the instability region is shifted somewhat toward the region of short-wave perturbations.

Figure 5a and b shows a curve of Re∗(Prm) for Al = 0.010 and 0.015, respectively. The instability regions
shown in Fig. 5 have a complex shape, which is not characteristic of hydrodynamic stability problems. For Prm → 0,
the values of the critical Reynolds number tend to the corresponding values for dielectric fluids, and for Prm > 10,
the curves of Re∗(Prm) enter horizontal asymptotes which correspond to Prm → ∞. An increase in the magnetic
Prandtl number from 10−4 to 10−3 leads to an insignificant increase in the critical Reynolds number. With a
further increase in the magnetic Prandtl number, the curve of Re∗(Prm) rotates toward decreasing magnetic Prandtl
number, thus bounding the examined instability region from above. With increasing Alfvén number, this instability
region becomes narrower, with the upper boundary affected by the Alfvén number the most significantly (Fig. 5).
Above the examined instability region there is a stability region, which is bounded from above by the second branch
of the curve of Re∗(Prm). As the magnetic Prandtl number increases, the critical Reynolds numbers of this branch
decrease. This arrangement of the curves of Re∗(Prm) causes a sudden increase in the critical Reynolds numbers with
increasing value of Prm. Similar behavior of the curve of Re∗(Prm) is observed for Prm ≈ 1. In Fig. 5a, the curve of
Prm ≈ 1 has a characteristic maximum for Re∗(Prm). With a further increase in the Alfvén number, it is replaced
by a narrow stability region of the given flow (Fig. 5b). Conclusions. The following conclusions can be drawn. An
increase in the Alfvén number for some values of the parameters can lead to a sudden increase in the critical Reynolds
numbers. This flow has regions of stability with respect to small two-dimensional perturbations for Re = 106–107.
Dissipation was shown to have a considerable effect on the stability of this flow. A change in the magnetic Prandtl
number leads to a considerable change in the critical Reynolds numbers; a sudden stabilization of this flow can be
observed. A change in the parameters (the Alfvén number and the magnetic Prandtl number) can lead to a change
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Fig. 5. Curves of Re∗(Prm) for Al = 0.010 (a) and 0.015 (b); the dashed regions are instability regions.

in the nature of the neutral curves of two-dimensional perturbations — the closed instability region is separated
from the “tip” of the neutral curve, which decreases with increasing Alfvén number and then disappears. For this
flow, the Squire transformations are valid but the Squire theorem is, generally speaking, inapplicable. Regions were
found in which two-dimensional perturbations attenuate and three-dimensional perturbations are unstable.

In the presence of a longitudinal magnetic field, an electrically conducting fluid in a plane channel exhibits
a complex and peculiar flow stability pattern. The detailed analysis of the dependence of the critical Reynolds
number on the magnetic Prandtl number revealed a new branch of instability at large Reynolds numbers. This
instability branch was studied in detail for Re = 106–107 using modern computational facilities and the differential
sweep method.
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